Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ f(x) dx =f(x), then ∫ f(x) 2 dx is equal is
Q. If
∫
f
(
x
)
d
x
=
f
(
x
)
,
then
∫
{
f
(
x
)
}
2
d
x
is equal is
8351
195
VITEEE
VITEEE 2010
Integrals
Report Error
A
2
1
{
f
(
x
)
}
2
54%
B
{
f
(
x
)
}
3
9%
C
3
{
f
(
x
)
}
3
26%
D
{
f
(
x
)
}
2
11%
Solution:
Since,
∫
f
(
x
)
d
x
=
f
(
x
)
⇒
d
x
d
f
(
x
)
=
f
(
x
)
[
∵
f
(
x
)
=
∫
d
x
d
f
(
x
)
d
x
]
Now,
∫
{
f
(
x
)
}
2
d
x
=
∫
f
(
x
)
.
f
(
x
)
d
x
=
f
(
x
)
∫
f
(
x
)
d
x
−
∫
[
d
x
d
f
(
x
)
∫
f
(
x
)
d
x
]
d
x
(integrating by parts)
=
f
(
x
)
f
(
x
)
−
∫
f
(
x
)
f
(
x
)
d
x
⇒
2
∫
{
f
(
x
)
}
2
d
x
=
{
f
(
x
)
}
2
⇒
∫
{
f
(
x
)
}
2
d
x
=
2
1
{
f
(
x
)
}
2
Alternate
∫
f
(
x
)
d
x
=
f
(
x
)
[
∵
∫
d
x
d
f
(
x
)
d
x
=
f
(
x
)
]
f
(
x
)
=
d
x
d
f
(
x
)
⇒
∫
d
x
=
∫
f
(
x
)
d
{
f
(
x
)}
,
on integrating
lo
g
c
+
x
=
lo
g
f
(
x
)
f
(
x
)
=
c
e
x
...(i)
{
f
(
x
)
}
2
=
c
2
e
2
x
On integrating,
∫
{
f
(
x
)
}
2
d
x
=
2
c
2
e
2
x
, [From Eq. (i)]
∫
{
f
(
x
)
}
2
d
x
=
2
1
{
c
e
x
}
2
=
2
1
{
f
(
x
)
}
2