∫ex(1−x1−xn)dx=exP(x)+C
Let P(x)=a0+a1x+a2x2+…….+an−1xn−1 =∫ex(1+x+x2+……+xn−1)dx=ex(a0+a1x+a2x2+……+an−1xn−1)+c P(0)=a0=620
Differentiating both sides ex(1+x+x2+……xn−1)=ex(a1+2a2x+3a3x2+……+(n−1)n−1xn−2) +(a0+a1x+a2x2+……+an−1xn−1)ex
Comparing coefficient of same power of x an−1=1 a0=620 a1+a0=1⇒a1=−619 a1+2a2=1⇒a2=310 a2+3a3=1⇒a3=−103 a3+4a4=1⇒a4=+26 a4+5a5=1⇒a5=−5 a5+6a6=1⇒a6=1 ∴n−1=6⇒n=7