Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ( e x (1+ sin x ) dx /1+ cos x )= e x f ( x )+ C, then f ( x ) is equal to
Q. If
∫
1
+
c
o
s
x
e
x
(
1
+
s
i
n
x
)
d
x
=
e
x
f
(
x
)
+
C
, then
f
(
x
)
is equal to
1913
164
Integrals
Report Error
A
sin
2
x
17%
B
cos
2
x
25%
C
tan
2
x
52%
D
lo
g
2
x
7%
Solution:
∫
e
x
(
1
+
c
o
s
x
)
(
1
+
s
i
n
x
)
d
x
=
∫
e
x
[
2
1
sec
2
2
x
+
tan
2
x
]
d
x
=
2
1
∫
e
x
sec
2
2
x
d
x
+
∫
e
x
tan
2
x
d
x
=
e
x
tan
2
x
+
C
But
I
=
e
x
f
(
x
)
+
C
(given)
∴
f
(
x
)
=
tan
2
x