Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ e sec x ( sec x tan xf(x) + ( sec x tan x + sec2 x )dx = e sec x f(x) + C , then a possible choice of f(x) is :
Q. If
∫
e
s
e
c
x
(
sec
x
tan
x
f
(
x
)
+
(
sec
x
tan
x
+
sec
2
x
)
d
x
=
e
s
e
c
x
f
(
x
)
+
C
,
then a possible choice of
f
(
x
)
is :
2070
235
JEE Main
JEE Main 2019
Integrals
Report Error
A
sec
x
−
tan
x
−
2
1
20%
B
x
sec
x
+
tan
x
+
2
1
30%
C
sec
x
+
x
tan
x
−
2
1
19%
D
sec
x
+
tan
x
+
2
1
30%
Solution:
∫
e
s
e
c
x
(
sec
x
tan
x
f
(
x
)
+
(
sec
x
tan
x
+
sec
2
x
)
d
x
)
=
e
s
e
c
x
f
(
x
)
+
C
Diff. both sides w.r.t. 'x'
e
s
e
c
x
(
sec
x
tan
x
f
(
x
)
+
(
sec
x
tan
x
+
sec
2
x
)
)
=
e
s
e
c
x
.
sec
x
tan
x
f
(
x
)
+
e
s
e
c
x
f
′
(
x
)
f
′
(
x
)
=
sec
2
x
+
tan
x
sec
x
⇒
f
(
x
)
=
tan
x
+
sec
x
+
c