Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫( e 2 x +2 e x - e - x -1) e ( c x + e - x ) dx =g(x) e(e2+e-x)+c, where c is a constant of integration, then g (0) is equal to :
Q. If
∫
(
e
2
x
+
2
e
x
−
e
−
x
−
1
)
e
(
c
x
+
e
−
x
)
d
x
=
g
(
x
)
e
(
e
2
+
e
−
x
)
+
c
,
where
c
is a constant of integration, then
g
(
0
)
is equal to :
5254
216
JEE Main
JEE Main 2020
Integrals
Report Error
A
2
B
e
2
C
e
D
1
Solution:
e
2
x
+
2
e
x
−
e
−
x
−
1
=
e
x
(
e
x
+
1
)
−
e
−
x
(
e
x
+
1
)
+
e
x
=
[
(
e
x
+
1
)
(
e
x
−
e
−
x
)
+
e
x
]
so
I
=
∫
(
e
x
+
1
)
(
e
x
−
e
−
x
)
e
e
x
+
e
−
x
+
∫
e
x
⋅
e
e
x
+
e
−
x
d
x
=
(
e
x
+
1
)
e
e
x
+
e
−
x
−
∫
e
x
.
e
e
x
+
e
−
x
d
x
+
∫
e
x
.
e
e
x
+
e
−
x
d
x
=
(
e
x
+
1
)
e
e
x
+
e
−
1
+
C
∴
g
(
x
)
=
e
x
+
1
⇒
g
(
0
)
=
2