Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (dx/x3(1+x6)(2)3)=f (x)(1+x 6)(1/3)+C, where C is a constant of integration, then the function f (x) is equal to-
Q. If
∫
x
3
(
1
+
x
6
)
3
2
d
x
=
f
(
x
)
(
1
+
x
6
)
3
1
+
C
, where C is a constant of integration, then the function
f
(
x
)
is equal to-
3777
162
JEE Main
JEE Main 2019
Integrals
Report Error
A
−
6
x
3
1
10%
B
x
2
3
20%
C
−
2
x
2
1
20%
D
−
2
x
3
1
51%
Solution:
∫
x
3
(
1
+
x
6
)
3
2
d
x
=
x
f
(
x
)
(
1
+
x
6
)
3
1
+
c
∫
x
7
(
x
6
1
+
1
)
3
2
d
x
=
x
f
(
x
)
(
1
+
x
6
)
3
1
+
c
Let
t
=
x
6
1
+
1
d
t
=
x
7
−
6
d
x
=
−
6
1
∫
t
3
2
d
t
=
−
2
1
t
3
1
=
−
2
1
(
x
6
1
+
1
)
3
1
=
−
2
1
x
2
(
1
+
x
6
)
3
1
∴
f
(
x
)
=
−
2
x
3
1