Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫(dx/(x+2)(x2 +1)) = a log|1+x2| +b tan-1 x +(1/5)log|x+2|+C, then
Q. If
∫
(
x
+
2
)
(
x
2
+
1
)
d
x
=
a
l
o
g
∣
∣
1
+
x
2
∣
∣
+
b
t
a
n
−
1
x
+
5
1
l
o
g
∣
x
+
2
∣
+
C
, then
3692
208
Integrals
Report Error
A
a
=
10
−
1
,
b
=
5
−
2
15%
B
a
=
10
1
,
b
=
5
−
2
31%
C
a
=
10
−
1
,
b
=
5
2
38%
D
a
=
10
1
,
b
=
5
2
16%
Solution:
We have,
I
=
∫
(
x
+
2
)
(
x
2
+
1
)
d
x
Let
(
x
+
2
)
(
x
2
+
1
)
1
=
x
+
2
A
+
x
2
+
1
B
x
+
C
⇒
1
=
A
(
x
2
+
1
)
+
B
x
(
x
+
2
)
+
C
(
x
+
2
)
...
(
i
)
Put
x
=
0
in
(
i
)
, we get
A
+
2
C
=
1
Put
x
=
−
2
in
(
i
)
, we get
A
=
5
1
⇒
C
=
5
2
Put
x
=
1
in
(
i
)
, we get
1
=
2
A
+
3
B
+
3
C
, we get
B
=
5
−
1
⇒
∫
(
x
+
2
)
(
x
2
+
1
)
d
x
=
5
1
∫
x
+
2
d
x
−
5
1
∫
x
2
+
1
x
d
x
+
5
2
∫
x
2
+
1
d
x
=
5
1
l
o
g
∣
x
+
2
∣
−
10
1
l
o
g
∣
∣
x
2
+
1
∣
∣
+
5
2
t
a
n
−
1
x
+
C
Hence,
a
=
10
−
1
and
b
=
5
2