Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (d x/(x2+x+1)2)=a tan -1((2 x+1/√3))+b((2 x+1/x2+x+1))+C x>0 where C is the constant of integration, then the value of 9(√3 a+b) is equal to
Q. If
∫
(
x
2
+
x
+
1
)
2
d
x
=
a
tan
−
1
(
3
2
x
+
1
)
+
b
(
x
2
+
x
+
1
2
x
+
1
)
+
C
x
>
0
where
C
is the constant of integration, then the value of
9
(
3
a
+
b
)
is equal to ____
1477
164
JEE Main
JEE Main 2021
Integrals
Report Error
Answer:
15
Solution:
I
=
∫
[
(
x
+
2
1
)
2
+
4
3
]
2
d
x
∫
(
t
2
+
4
3
)
2
d
t
(
Put
x
+
2
1
=
t
)
=
2
3
∫
16
9
s
e
c
4
θ
s
e
c
2
θ
d
θ
(
Put
t
=
2
3
tan
θ
)
=
9
4
3
∫
(
1
+
cos
2
θ
)
d
θ
=
9
4
3
[
θ
+
2
s
i
n
2
θ
]
+
c
=
9
4
3
[
tan
−
1
(
3
2
x
+
1
)
+
3
+
(
2
x
+
1
)
2
3
(
2
x
+
1
)
]
+
c
=
9
4
3
tan
−
1
(
3
2
x
+
1
)
+
3
1
(
x
2
+
x
+
1
2
x
+
1
)
+
c
Hence,
9
(
3
a
+
b
)
=
15