Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (dθ/cos2 θ(tan 2θ+sec 2θ))= λ tanθ+2 loge|f (θ)+C| where C is a constant of integration, then the ordered pair (λ, f (θ)) is equal to :
Q. If
∫
co
s
2
θ
(
t
an
2
θ
+
sec
2
θ
)
d
θ
=
λ
t
an
θ
+
2
l
o
g
e
∣
f
(
θ
)
+
C
∣
where C is a constant of integration, then the ordered pair
(
λ
,
f
(
θ
)
)
is equal to :
3416
184
JEE Main
JEE Main 2020
Integrals
Report Error
A
(
−
1
,
1
−
t
an
θ
)
10%
B
(
−
1
,
1
+
t
an
θ
)
63%
C
(
1
,
1
+
t
an
θ
)
16%
D
(
1
,
1
−
t
an
θ
)
11%
Solution:
I
=
∫
co
s
2
θ
(
t
an
2
θ
+
sec
2
θ
)
d
θ
=
∫
1
−
,
t
a
n
2
θ
2
t
an
θ
+
1
−
,
t
a
n
2
θ
1
+
,
t
a
n
2
θ
=
∫
(
1
+
t
an
θ
)
2
(
1
−
,
t
a
n
2
θ
)
se
c
2
θ
d
θ
se
c
2
θ
d
θ
t
an
θ
=
t
⇒
se
c
2
θ
d
θ
=
d
t
I
=
∫
(
1
+
t
)
2
1
−
t
2
d
t
=
∫
(
1
+
t
)
2
(
1
−
t
)
(
1
+
t
)
d
t
=
∫
1
+
t
1
−
1
+
t
1
d
t
=
ℓ
n
∣
1
+
t
∣
−
∫
(
1
+
t
1
+
t
−
1
+
t
1
)
d
t
ℓ
n
∣
1
+
t
∣
−
t
+
ℓ
n
∣
1
+
t
∣
=
ℓ
2
n
∣
1
+
t
an
θ
∣
−
t
an
θ
+
C
λ
=
−
1
,
f
(
θ
)
=
1
+
t
an
θ