Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (cos x-sin x/8-sin 2x) dx = (1/p) log [(3+sin x+cos x/3-sin x -cos x)] +c then p= .......
Q. If
∫
8
−
s
in
2
x
cos
x
−
s
in
x
d
x
=
p
1
l
o
g
[
3
−
s
in
x
−
cos
x
3
+
s
in
x
+
cos
x
]
+
c
then
p
=
.......
2174
207
MHT CET
MHT CET 2019
Report Error
A
6
B
1
C
3
D
12
Solution:
We have,
∫
8
−
s
i
n
2
x
c
o
s
x
−
s
i
n
x
=
p
1
lo
g
[
3
−
s
i
n
x
−
c
o
s
x
3
+
s
i
n
x
+
c
o
s
x
]
+
C
Now,
∫
8
−
s
i
n
2
x
c
o
s
x
−
s
i
n
x
d
x
=
∫
9
−
(
1
+
2
s
i
n
x
c
o
s
x
)
c
o
s
x
−
s
i
n
x
d
x
=
∫
9
−
(
s
i
n
2
x
+
c
o
s
2
x
+
2
s
i
n
x
c
o
s
x
)
c
o
s
x
−
s
i
n
x
d
x
=
∫
(
3
)
2
−
(
c
o
s
x
+
s
i
n
x
)
2
c
o
s
x
−
s
i
n
x
d
x
put
cos
x
+
sin
x
=
t
(
−
sin
x
+
cos
x
)
d
x
=
d
t
=
∫
(
3
)
2
−
(
t
)
2
d
t
=
2
(
3
)
1
lo
g
∣
∣
3
−
t
3
+
t
∣
∣
+
C
=
6
1
lo
g
∣
∣
3
−
s
i
n
x
−
c
o
s
x
3
+
s
i
n
x
+
c
o
s
x
∣
∣
+
C
∴
p
=
6