Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ cos x . cos 2x . cos 5x dx = A sin 2x + B sin 4x + C sin 6x + D sin 8x + k (where k is the arbitrary constant of integration), then (1/B) + (1/C) =
Q. If
∫
cos
x
.
cos
2
x
.
cos
5
x
d
x
=
A
sin
2
x
+
B
sin
4
x
+
C
sin
6
x
+
D
sin
8
x
+
k
(where
k
is the arbitrary constant of integration), then
B
1
+
C
1
=
4373
201
AP EAMCET
AP EAMCET 2019
Report Error
A
A
1
−
D
1
B
A
1
+
D
1
C
1
D
0
Solution:
Given,
∫
cos
x
⋅
cos
2
x
⋅
cos
5
x
d
x
=
2
1
∫
2
cos
x
cos
5
x
cos
2
x
d
x
=
2
1
∫
{
cos
(
5
x
+
x
)
+
cos
(
5
x
−
x
)}
cos
2
x
d
x
=
2
1
∫
(
cos
6
x
+
cos
4
x
)
cos
2
x
d
x
=
4
1
∫
(
2
cos
6
x
cos
2
x
+
2
cos
2
x
cos
4
x
)
d
x
=
4
1
∫
(
cos
8
x
+
cos
4
x
+
cos
6
x
+
cos
2
x
)
d
x
=
4
1
[
8
s
i
n
8
x
+
4
s
i
n
4
x
+
6
s
i
n
6
x
+
2
s
i
n
2
x
]
+
k
=
8
s
i
n
2
x
+
16
s
i
n
4
x
+
24
s
i
n
6
x
+
32
s
i
n
8
x
+
k
On comparing,
A
=
8
1
,
B
=
16
1
,
C
=
24
1
and
D
=
32
1
∴
B
1
+
C
1
=
16
+
24
=
40
Now,
A
1
+
D
1
=
8
+
32
=
40
∴
B
1
+
C
1
=
A
1
+
D
1