Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limitsa0 f(2a-x)dx = m and ∫ limitsa0 f(x)dx = n , then ∫ limits2a0 f(x)dx is equal to
Q. If
0
∫
a
f
(
2
a
−
x
)
d
x
=
m
and
0
∫
a
f
(
x
)
d
x
=
n
,
then
0
∫
2
a
f
(
x
)
d
x
is equal to
9523
234
BITSAT
BITSAT 2018
Report Error
A
2m + n
0%
B
m + 2n
25%
C
m - n
25%
D
m + n
50%
Solution:
Put
x
=
2
a
−
t
so that
d
x
=
−
d
t
when
x
=
a
,
t
=
a
and when
x
=
2
a
,
t
=
0
0
∫
2
f
(
x
)
d
x
=
0
∫
a
f
(
x
)
d
x
+
0
∫
a
f
(
2
a
−
t
)
d
t
=
n
+
m