Let 6x+7=λdxd(x−5)(x−4)+μ
i.e. 6x+7=λ(2x−9)+μ which gives λ=3 and μ=34 ∴∫(x−5)(x−4)6x+7dx=∫x2−9x+203(2x−9)+34dx =3∫(2x−9)(x2−9x+20)−21dx+34∫x2−9x+20dx =3∫−21+1(x2−9x+20)−21+1+34∫x2−9x+481−41dx =6x2−9x+20+34∫(x−29)2−(21)2dx =6x2−9x+20+34log{∣∣x−29+(x−29)2−(21)2∣∣}+C =6x2−9x+20+34log∣∣x+x2−9x+20−29∣∣+C ∴A=6,B=34.