Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
if ∫(3x+4/x3-2x-4)dx =log|x-2| +k logf(x)+c, then
Q. if
∫
x
3
−
2
x
−
4
3
x
+
4
d
x
=
l
o
g
∣
x
−
2
∣
+
k
l
o
g
f
(
x
)
+
c
, then
2151
191
Integrals
Report Error
A
f
(
x
)
=
f
(
x
)
=
∣
∣
x
2
+
2
x
+
2
∣
∣
24%
B
f
(
x
)
=
x
2
+
2
x
+
2
13%
C
k
=
−
1/2
12%
D
All of these
51%
Solution:
x
3
−
2
x
−
4
3
x
+
4
=
(
x
−
2
)
(
x
2
+
2
x
+
2
)
3
x
+
4
=
x
−
2
A
+
x
2
+
2
x
+
2
B
x
+
C
⇒
3
x
+
4
=
A
(
x
2
+
2
x
+
2
)
+
(
B
x
+
C
)
(
x
−
2
)
∴
A
+
B
=
O
′
,
2
A
−
2
B
+
C
=
3
,
2
A
−
2
C
=
4
,
⇒
A
=
1
,
B
=
C
=
−
1
∴
∫
x
3
−
2
x
−
4
3
x
+
4
d
x
=
∫
x
−
2
d
x
−
2
1
∫
x
2
+
2
x
+
2
2
x
+
2
d
x
=
l
o
g
∣
x
−
2
∣
−
2
1
l
o
g
∣
∣
x
2
+
2
x
+
2
∣
∣
+
C
⇒
k
=
−
2
1
an
df
(
x
)
=
∣
∣
x
2
+
2
x
+
2
∣
∣