Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫(3x+1/(x-1)(x-2)(x-3))dx A log |x - 1| B log |x - 2| + C log |x - 3| + C , then the values of A, B and C are respectively
Q. If
∫
(
x
−
1
)
(
x
−
2
)
(
x
−
3
)
3
x
+
1
d
x
A
lo
g
∣
x
−
1∣
B
lo
g
∣
x
−
2∣
+
C
lo
g
∣
x
−
3∣
+
C
, then the values of
A
,
B
and
C
are respectively
2144
201
KCET
KCET 2020
Integrals
Report Error
A
5, -7, -5
19%
B
2, -7, -5
34%
C
5, -7, 5
16%
D
2, -7, 5
31%
Solution:
Let
(
x
−
1
)
(
x
−
2
)
(
x
−
3
)
3
x
+
1
=
x
−
1
A
+
x
−
2
B
+
x
−
3
C
…
(i)
⇒
∫
(
x
−
1
)
(
x
−
2
)
(
x
−
3
)
3
x
+
1
d
x
=
A
lo
g
∣
x
−
1∣
+
B
lo
g
∣
x
−
2∣
+
C
lo
g
∣
x
−
3∣
+
C
Now,
3
x
+
1
=
A
(
x
−
2
)
(
x
−
3
)
+
B
(
x
−
1
)
(
x
−
3
)
+
C
(
x
−
1
)
(
x
−
2
)
[From eqn. (1)]
Putting
x
=
1
,
x
=
2
,
x
=
3
in the above equation one at a time, we get
A
=
2
,
B
=
−
7
,
C
=
5