Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (2 e x +3 e - x /4 e x +7 e - x ) dx =(1/14)( ux + v log e (4 e x +7 e - x ))+ C, where C is a constant of integration, then u + v is equal to
Q. If
∫
4
e
x
+
7
e
−
x
2
e
x
+
3
e
−
x
d
x
=
14
1
(
ux
+
v
lo
g
e
(
4
e
x
+
7
e
−
x
)
)
+
C
, where
C
is a constant of integration, then
u
+
v
is equal to ______
1642
223
JEE Main
JEE Main 2021
Integrals
Report Error
Answer:
7
Solution:
∫
4
e
x
+
7
e
−
x
2
e
x
d
x
+
3
∫
4
e
x
+
7
e
−
x
e
−
x
d
x
=
∫
4
e
2
x
+
7
2
e
2
x
d
x
+
3
∫
4
+
7
e
−
2
x
e
−
2
x
d
x
Let
4
e
2
x
+
7
=
T
8
e
2
x
d
x
=
d
T
2
e
2
x
d
x
=
4
d
T
Let
4
+
7
e
−
2
x
=
t
−
14
e
−
2
x
d
x
=
d
t
e
−
2
x
d
x
=
−
14
d
t
∫
4
T
d
T
−
14
3
∫
t
d
t
=
4
1
lo
g
T
−
14
3
lo
g
t
+
C
=
4
1
lo
g
(
4
e
2
x
+
7
)
−
14
3
lo
g
(
4
+
7
e
−
2
x
)
+
C
=
14
1
[
2
1
lo
g
(
4
e
x
+
7
e
−
x
)
+
2
13
x
]
+
C
u
=
2
13
,
v
=
2
1
⇒
u
+
v
=
7
Aliter :
2
e
x
+
3
e
−
x
=
A
(
4
e
x
+
7
e
−
x
)
+
B
(
4
e
x
−
7
e
−
x
)
+
λ
2
=
4
A
+
4
B
;
3
=
7
A
−
7
B
;
λ
=
0
A
+
B
=
2
1
A
−
B
=
7
3
A
=
2
1
(
2
1
+
7
3
)
=
28
7
+
6
=
28
13
B
=
A
−
7
3
=
28
13
−
7
3
=
28
13
−
12
=
28
1
∫
28
13
d
x
+
28
1
∫
4
e
x
+
7
e
−
x
4
e
x
−
7
e
−
x
d
x
28
13
x
+
28
1
ℓ
n
∣
4
e
x
+
7
e
−
x
∣
+
C
u
=
2
13
;
v
=
2
1
⇒
u
+
v
=
7