We have, ∫cot2x−tan2x2dxdx=∫sin2xcos2x−cos2xsin2x2dx =∫cos4x−sin4x2sinxcosxdx[∵sin2x=2sinxcosx] =∫(cos2x−sin2x)(cos2x+sin2x)sin2xdx [∵sin2x+cos2x=1 and cos2x−sin2x=cos2x] =∫cos2xsin2xdx
Put cos2x=t ⇒−2sin2xdx=dt ⇒−21∫tdt=−21−21+1t2−1+1+c ⇒−2121t1/2+c=−t+c=−cos2x+c [t=cos2x]
Compare with −f(x)+c
So, f(x)=cos2x