Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (1/x+x5)dx =f(x)+c , then ∫ (x4/x+x5) dx =
Q. If
∫
x
+
x
5
1
d
x
=
f
(
x
)
+
c
,
then
∫
x
+
x
5
x
4
d
x
=
4912
194
COMEDK
COMEDK 2008
Integrals
Report Error
A
lo
g
∣
x
∣
+
f
(
x
)
+
c
23%
B
lo
g
∣
x
∣
−
f
(
x
)
+
c
48%
C
lo
g
∣
x
∣
+
x
f
(
x
)
+
c
21%
D
lo
g
∣
x
∣
−
x
f
(
x
)
+
c
7%
Solution:
∫
x
+
x
5
1
d
x
=
f
(
x
)
+
c
I
=
∫
x
+
x
5
x
4
d
x
=
∫
x
(
1
+
x
4
)
x
4
+
1
−
1
d
x
=
∫
x
(
1
+
x
4
)
x
4
+
1
d
x
−
∫
x
(
1
+
x
4
)
1
d
x
=
∫
x
1
d
x
−
∫
x
+
x
5
1
d
x
=
l
o
g
∣
x
∣
−
f
(
x
)
+
c