Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (√1-x2/x4) dx = A (x)(√1-x2)m + C , for a suitable chosen integer m and a function A(x), where C is a constant of integration then (A(x))m equals :
Q. If
∫
x
4
1
−
x
2
d
x
=
A
(
x
)
(
1
−
x
2
)
m
+
C
, for a suitable chosen integer
m
and a function
A
(
x
)
, where
C
is a constant of integration then
(
A
(
x
)
)
m
equals :
4366
211
JEE Main
JEE Main 2019
Integrals
Report Error
A
3
x
3
−
1
20%
B
27
x
9
−
1
40%
C
9
x
4
1
35%
D
27
x
6
1
5%
Solution:
∫
x
4
1
−
x
2
d
x
=
A
(
x
)
(
1
−
x
2
)
m
+
C
∫
x
4
∣
x
∣
x
2
1
−
1
d
x
Put
x
2
1
−
1
=
t
⇒
d
x
d
t
=
x
3
−
2
Case-1 x
≥
0
−
2
1
∫
t
d
t
⇒
−
3
t
3/2
+
C
⇒
−
3
1
(
x
2
1
−
1
)
3/2
⇒
−
3
x
2
(
1
−
x
2
)
3
+
C
A
(
x
)
=
−
3
x
3
1
(
A
(
x
)
)
m
=
(
−
3
x
3
1
)
3
=
−
27
x
9
1
Case-II x
≤
0
We get
−
3
x
3
(
1
−
x
2
)
3
+
C
A
(
x
)
=
−
3
x
3
1
,
m
=
3
(
A
(
x
)
)
m
=
27
x
9
−
1