∴∫(x41+x21)x8+x6+x4x2x2−1dx=sec−1f(x)+c ⇒∫x31(x+x1)x3x2+1+x21(1−x21)dx=sec−1(f(x))+C ⇒∫(x+x1)(x+x1)2−1(1−x21)dx=sec−1f(x)+C ⇒sec−1(x+x1)+C=sec−1(f(x))+C ⇒sec−1(x+x1)+C=sec−1(f(x))+C ⇒f(x)=x2(x+1)(x−1)=0⇒x=±1
Maximum occur at x=−1 and minimum occur at x=1