We have, I=∫(sinx+4)(sinx−1)1dx =51∫(sinx+4)(sinx−1)(sinx+4)−(sinx−1)dx =51∫sinx−11dx−51∫sinx+41dx =51∫2tan2x−1−tan22xsec22xdx −51∫2tan2x+4+4tan22xsec22xdx
Put, tan2x=t ⇒sec22xdx=2dt ∴I=51∫2t−1−t22dt−51∫[2t+4(1+t2)]2dt ∴I=−52∫t2−2t+1dt−101∫t2+21t+1dt =5−2∫(t−1)21dt−101∫(t+41)2+(415)2dt =52⋅t−11−5152tan−1(154t+1)+C =52tan2x−11−5152tan−1(154tan2x+1)+C… (i)
But, given that I−A(tan2x−1)1+Btan−1[f(x)]+C....(ii)
From Eqs. (i) and (ii), we get A=52,B=515−2,f(x)=154tan2x+1