Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (1-( cot x)2019/ tan x+( cot x)2020) d x=(1/n) ln |(f(x))n+(g(x))n|+c, then the value of n[(f(x))4+(g(x))4]x=(π/3)=
Q. If
∫
t
a
n
x
+
(
c
o
t
x
)
2020
1
−
(
c
o
t
x
)
2019
d
x
=
n
1
ln
∣
(
f
(
x
)
)
n
+
(
g
(
x
)
)
n
∣
+
c
, then the value of
n
[
(
f
(
x
)
)
4
+
(
g
(
x
)
)
4
]
x
=
3
π
=
2619
176
TS EAMCET 2020
Report Error
A
16
10105
B
15
10012
C
9
20210
D
8
10105
Solution:
Let
I
=
∫
t
a
n
x
+
(
c
o
t
x
)
2020
1
−
(
c
o
t
x
)
2019
d
x
=
∫
c
o
s
x
s
i
n
x
+
(
s
i
n
x
)
2020
(
c
o
s
x
)
2020
d
x
1
−
(
s
i
n
x
)
2019
(
c
o
s
x
)
2019
=
∫
s
i
n
2021
x
+
c
o
s
2021
x
s
i
n
2019
x
−
c
o
s
2019
x
⋅
sin
x
cos
x
d
x
Put
sin
2021
x
+
cos
2021
x
=
t
⇒
[
2021
sin
2020
x
⋅
cos
x
+
2021
cos
2020
⋅
(
−
sin
x
)
]
d
x
=
d
t
⇒
sin
x
cos
x
[
sin
2019
x
−
cos
2019
x
]
d
x
=
2021
1
d
t
∴
I
=
2021
1
∫
t
1
d
t
=
2021
1
lo
g
t
+
C
=
2021
1
lo
g
[
sin
2021
x
+
cos
2021
x
]
+
C
∴
f
(
x
)
=
sin
x
,
g
(
x
)
=
cos
x
,
n
=
2021
∴
n
[
(
f
(
x
)
4
+
(
g
(
x
)
4
)
]
x
=
3
π
=
2021
[
sin
4
3
π
+
cos
4
3
π
]
=
2021
[
(
2
3
)
4
+
(
2
1
)
4
]
=
2021
[
16
9
+
16
1
]
=
16
2021
×
10
=
8
10105