Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ (1/6 x2+13 x+6) d x=(1/a) ln |(b x+2/2 x+b)|+C, where a, b ∈ R and C is constant of integration to is equal to
Q. If
∫
6
x
2
+
13
x
+
6
1
d
x
=
a
1
ln
∣
∣
2
x
+
b
b
x
+
2
∣
∣
+
C
, where
a
,
b
∈
R
and
C
is constant of integration to is equal to
498
136
Integrals
Report Error
A
3
B
5
C
7
D
8
Solution:
Given integral
=
∫
(
2
x
+
3
)
(
3
x
+
2
)
1
d
x
=
∫
(
(
2
x
+
3
)
5
−
2
+
(
3
x
+
2
)
5
3
)
d
x
I
=
5
−
1
ln
(
2
x
+
3
)
+
5
1
ln
(
3
x
+
2
)
+
C
=
5
1
ln
∣
∣
2
x
+
3
3
x
+
2
∣
∣
+
C
∴
a
=
5
and
b
=
3
⇒
a
+
b
=
8