Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫0λ xf( sin x)dx=A∫0π /2f( sin x)dx, then A is equal to
Q. If
∫
0
λ
x
f
(
sin
x
)
d
x
=
A
∫
0
π
/2
f
(
sin
x
)
d
x
,
then A is equal to
1933
211
KEAM
KEAM 2008
Report Error
A
0
B
π
C
4
π
D
2
π
E
3
π
Solution:
Let
I
=
∫
0
π
x
f
(
sin
x
)
d
x
...(i)
=
∫
0
π
(
π
−
x
)
f
[
sin
(
π
−
x
)]
d
x
⇒
=
∫
0
π
(
π
−
x
)
f
(
sin
x
)
d
x
...(ii)
On adding Eqs. (i) and (ii), we get
2
I
=
∫
0
π
π
f
(
sin
x
)
d
x
⇒
I
=
2
π
∫
0
π
f
(
sin
x
)
d
x
=
π
∫
0
π
/2
f
(
sin
x
)
d
x
⇒
A
∫
0
π
/2
f
(
sin
x
)
d
x
=
π
∫
0
π
/2
f
(
sin
x
)
d
x
⇒
A
=
π