Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \int_{0}^{\lambda }{xf(\sin x)}dx=A\int_{0}^{\pi /2}{f(\sin x)}dx, $ then A is equal to

KEAMKEAM 2008

Solution:

Let $ I=\int_{0}^{\pi }{x}f(\sin x)dx $ ...(i)
$=\int_{0}^{\pi }{(\pi -x)}f[\sin (\pi -x)]dx $
$ \Rightarrow $ $=\int_{0}^{\pi }{(\pi -x)}f(\sin x)dx $ ...(ii)
On adding Eqs. (i) and (ii), we get
$ 2I=\int_{0}^{\pi }{\pi }f(\sin x)dx $
$ \Rightarrow $ $ I=\frac{\pi }{2}\int_{0}^{\pi }{f(\sin x)dx=\pi }\int_{0}^{\pi /2}{f(\sin x)}dx $
$ \Rightarrow $ $ A\int_{0}^{\pi /2}{f(\sin x)dx=\pi }\int_{0}^{\pi /2}{f(\sin x)}dx $
$ \Rightarrow $ $ A=\pi $