Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Given that ∫ limits0∞(x2/(x2+a2)(x2+b2)(x2+c2)) dx = (π/2(a+b)(b+c)(c+a)') then ∫ limits0∞(dx/(x2+4)(x2+9)) is
Q. Given that
0
∫
∞
(
x
2
+
a
2
)
(
x
2
+
b
2
)
(
x
2
+
c
2
)
x
2
d
x
=
2
(
a
+
b
)
(
b
+
c
)
(
c
+
a
)
′
π
then
0
∫
∞
(
x
2
+
4
)
(
x
2
+
9
)
d
x
is
3720
210
AMU
AMU 2015
Integrals
Report Error
A
60
π
89%
B
20
π
6%
C
40
π
2%
D
80
π
2%
Solution:
Let
I
=
0
∫
∞
(
x
2
+
4
)
(
x
2
+
9
)
d
x
=
0
∫
∞
x
2
(
x
2
+
4
)
(
x
2
+
9
)
x
2
d
x
=
0
∫
∞
(
x
2
+
0
)
(
x
2
+
4
)
(
x
2
+
9
)
x
2
d
x
=
2
(
0
+
2
)
(
2
+
3
)
(
3
+
0
)
π
[
∵
0
∫
∞
(
x
2
+
a
2
)
(
x
2
+
b
2
)
(
x
2
+
c
2
)
x
2
d
x
=
2
(
a
+
b
)
(
b
+
c
)
(
c
+
a
)
π
]
=
60
π