Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If in a triangle ABC,a=5,b=4,A=(π /2)+B, then C:
Q. If in a triangle
A
BC
,
a
=
5
,
b
=
4
,
A
=
2
π
+
B
,
then C:
1830
246
KEAM
KEAM 2005
Report Error
A
is
tan
−
1
(
9
1
)
B
is
tan
−
1
(
40
9
)
C
cannot be evaluated
D
is
2
tan
−
1
(
9
1
)
E
is
2
tan
−
1
(
40
1
)
Solution:
By sine rule
a
s
i
n
A
=
b
s
i
n
B
⇒
5
s
i
n
(
2
π
+
B
)
=
4
s
i
n
B
(
∵
A
=
2
π
+
B
g
i
v
e
n
)
⇒
tan
B
=
5
4
Also
∠
A
+
∠
B
+
∠
C
=
180
∘
⇒
2
π
+
2∠
B
+
∠
C
=
π
⇒
2
tan
−
1
(
5
4
)
+
∠
C
=
2
π
⇒
∠
C
=
2
π
−
2
tan
−
1
(
5
4
)
⇒
∠
C
=
2
π
−
tan
−
1
(
1
−
25
16
5
8
)
=
2
π
−
tan
−
1
(
9
40
)
=
cot
−
1
(
9
40
)
⇒
∠
C
=
tan
−
1
(
40
9
)