Given a2cosA+bcosB+c2cosC=bca+cab
We know that, cos A = 2bcb2+c2+a2
cos B = 2acc2+a2−b2
and cos C = 2aba2+b2−c2
On putting these values in Eq. (i), we get 2abc2(b2+c2−a2)+2abcc2+a2−b2 +2abc2(a2+b2−c2)=bca+cab ⇒2abc2(b2+c2−a2)+c2+a2−b2+2(a2+b2−c2)=abca2+b2 ⇒3b2+c2+a2=2a2+2b2 ⇒b2+c2=a2
Hence, the angle A is 90∘.