Sn=an2+bn+c ∴Sn−1=a(n−1)2+b(n−1)+c for n≥2 ∴tn=Sn−Sn−1 =a{n2−(n−1)2}+b{n−(n−1)}=a(2n−1)+b ∴tn=2an+b−a,n≥2 ∴tn−1=2a(n−1)+b−a for n≥3 ∴tn−tn−1=2a(n−n+1)=2a for n≥3 ∴t3−t2=t4−t3=..........2a
Now t2−t1=(S2−S1)−S1=S2−2S1 =(a⋅22+b⋅2+c)−{a⋅12+b⋅1+c}=2a−c=2a ∴ Series is arithmetic from the second term onwards.