Q.
If If f(x)={(x−4)1+5+x−ab0≤x<4 is continuous at x=4x>4 ,
then value of ab1 is equal to
2121
202
NTA AbhyasNTA Abhyas 2020Continuity and Differentiability
Report Error
Answer: 12
Solution:
∵f(x) is continuous at x=4 ∴x→4−limf(x)=x→4+limf(x)=f(4) x→4−limx−41+5+x−a=b
for numerator to be zero ⇒a=2
now after rationalization, x→4−lim(x−4)(1+5+x+2)(1+5+x−2)(1+5+x+2)=b x→4−lim(x−4)41+5+x−4=b
again on rationalization, x→4−lim(x−4)×4(5+x+3)(5+x)−9=b 4×61=b⇒b=241 ab1=224=12