Given integral I(x)=∫x2(logx)2dx=3x3(logx)2−∫3x3x2logxdx
[by integration by parts] =3x3(logx)2−32[3x3(logx)−∫3x3(x1)dx] =3x3(logx)2−32[3x3(logx)−313x3]+C =27x3[9(logx)2−6(logx)+2]+C ∵I(1)=0 ∴272+C=0 ⇒C=−272 ∴I(x)=27x3[9(logx)2−6(logx)+2]−272