Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If hati× [( overset arrow a - hatj) × hati]+ hatj× [( overset arrow a - hatk) × hatj]+ hatk× [( overset arrow a - hati) × hatk]=0 and overset arrow a=x hati+y hatj+z hatk , then the value of 8(x3 - x y + z x) is equal to
Q. If
i
^
×
[
(
a
→
−
j
^
)
×
i
^
]
+
j
^
×
[
(
a
→
−
k
^
)
×
j
^
]
+
k
^
×
[
(
a
→
−
i
^
)
×
k
^
]
=
0
and
a
→
=
x
i
^
+
y
j
^
+
z
k
^
, then the value of
8
(
x
3
−
x
y
+
z
x
)
is equal to
9
163
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
1
Solution:
i
^
×
[(
a
−
j
^
)
×
i
^
]
=
(
i
^
.
i
^
)
(
a
−
j
^
)
−
(
i
^
⋅
(
a
−
j
^
))
i
^
=
a
→
−
j
^
−
(
i
^
.
a
→
)
i
^
Therefore,
a
→
−
j
^
−
(
i
^
.
a
→
)
i
^
+
a
→
−
k
^
+
(
j
^
.
a
→
)
j
^
+
a
→
−
i
^
−
(
k
^
.
a
→
)
k
^
=
0
⇒
3
a
→
−
(
i
^
+
j
^
+
k
^
)
−
a
→
=
0
a
→
=
2
1
(
i
^
+
j
^
+
k
^
)
=
x
i
^
+
y
j
^
+
z
k
^
x
=
y
=
z
=
2
1
8
(
x
3
−
x
y
+
z
x
)
=
8
(
x
3
−
x
2
+
x
2
)
=
8
×
8
1
=
1