Given, In=∫sinxsinnxdx…(i) In−2=∫sinxsin(n−2)xdx…(ii)
Subtracting Eq. (ii) from Eq. (i), we get In−In−2=∫sinx{sinnx−sin(n−2)x}dx =∫sinx2cos(n−1)xsinxdx=∫2cos(n−1)xdx =(n−1)2sin(n−1)x ∴I6−I4=52sin5x and I4−I2=32sin3x
Now, I2=∫sinxsin2xdx =∫sinx2sinxcosxdx=2∫cosxdx =2sinx+c
and I6=I4+25sin3x =I2+23sin3x+25sin5x =25sin5x+23sin3x+2sinx+c =52sin5x+32(3sinx−4sin3x)+2sinx+c I6=52sin5x−38sin3x+4sinx+c