Given In​=−π∫π​(1+πx)sinxsinnx​dx.... (i)
Using a∫b​f(x)dx=a∫b​f(b+a−x)dx, we get In​=−π∫π​(1+πx)sinxπxsinnx​dx.....(ii)
On adding Eqs. (i) and (ii), we have 2In​=−π∫π​sinxsinnx​dx=20∫π​sinxsinnx​ [∵f(x)=sinsinnsinx​dx is an even function] ⇒In​=0∫π​sinxsinnx​dx
Now, In+2​−In​=0∫π​sinxsin(n+2)x−sinnx​dx =0∫π​sinx2cos(n+1)x⋅sinx​dx =20∫π​cos(n+1)xdx=2[(n+1)sin(n+1)x​]0π​=0 ∴In+2​=In​.....(iii)
Since, In​=0∫π​sinxsinnx​dx ⇒I1​=π and I2​=0
From Eq. (iii) I1​=I3​=I5​=…=π
and I2​=I4​=I6​=…=0 ⇒m=1∑10​I2m+1​=10π
and m=1∑10​I2m​=0 ∴ Correct options are (a), (b), (c).