Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If In=∫ limits-ππ ( sin n x/(1+πx) sin x) d x, n=0,1,2, ldots, then
Q. If
I
n
=
−
π
∫
π
(
1
+
π
x
)
s
i
n
x
s
i
n
n
x
d
x
,
n
=
0
,
1
,
2
,
…
, then
30
138
Integrals
Report Error
A
I
n
=
I
n
+
2
B
m
=
1
∑
10
I
2
m
+
1
=
10
π
C
m
=
1
∑
10
I
2
m
=
0
D
I
n
=
I
n
+
1
Solution:
(1)
I
n
=
−
π
∫
π
(
1
+
π
x
)
s
i
n
x
s
i
n
n
x
d
x
I
n
=
−
π
∫
π
(
1
+
π
x
)
s
i
n
x
π
x
s
i
n
n
x
d
x
(by property
a
∫
b
f
(
x
)
d
x
=
a
∫
b
f
(
a
+
b
−
x
)
d
x
)
2
I
n
=
−
π
∫
π
s
i
n
x
s
i
n
n
x
d
x
2
I
n
=
2
0
∫
π
s
i
n
x
s
i
n
n
x
d
x
I
n
=
0
∫
π
s
i
n
x
s
i
n
n
x
d
x
I
n
+
2
−
I
n
=
0
∫
π
s
i
n
x
s
i
n
(
n
+
2
)
x
−
s
i
n
n
x
d
x
=
0
∫
b
s
i
n
x
2
c
o
s
(
n
+
1
)
x
s
i
n
x
d
x
=
2
[
(
n
+
1
)
s
i
n
(
n
+
1
)
x
]
0
π
=
0
⇒
I
n
+
2
=
I
n
(2)
I
3
=
I
5
=
…
..
=
I
21
∴
m
=
1
∑
10
I
2
m
+
1
=
10
I
3
=
10
0
∫
π
sin
x
sin
3
x
d
x
=
10
0
∫
π
(
3
−
4
sin
2
x
)
d
x
=
10
[
3
x
−
2
x
+
2
sin
2
x
]
0
π
=
10
π
(3)
I
2
=
I
4
=
……
..
=
I
20
m
=
1
∑
10
I
2
m
=
10
0
∫
π
sin
x
sin
2
x
d
x
=
20
[
sin
x
]
0
π
=
0