We have, In=π/2∫∞e−xcosnxdx
Integration by parts In=[−e−xcosnx]π/2∞ −∫π/2∞−e−x⋅ncosn−1x(−sinx)dx =0−π/2∫∞ne−xcosn−1xsinxdx
By integration parts again, we get =−n[(−e−xcosn−1xsinx]π/2∞ −π/2∫∞−e−x(cosnx−(n−1)cosn−2xsin2x)dx] =−n[0+π/2∫∞(e−xcosnx−(n−1)e−x cosn−2x(1−cos2x)dx] [∵sin2x=1−cos2x] =−n[π/2∫∞e−xcosnxdx−(n−1) π/2∫∞e−xcosn−2xdx+(n−1)∫π/2∞e−xcosnxdx] =−n[In−(n−1)In−2+(n−1)In] ⇒In=−n[nIn−(n−1)In−2] ⇒In=−n2In+n(n−1)In−2 ⇒In+n2In=n(n−1)In−2 ⇒In(n2+1)=n(n−1)In−2 ⇒In−2In=n2+1n(n−1)
Put n=2018 I2016I2018=(2018)2+12018(2018−1)=(2018)2+12018×2017