Given integral is, In=0∫π/1tannxdx In=0∫π/4tann−2x⋅tan2xdx =0∫π4tann−2x⋅(sec2x−1)dx In=0∫π/4tann−2x⋅sec2xdx −0∫π/4tann−2xdx In=0∫1tn−2dt−0∫π/4tann−2xdx In=[n−1tn−1]01−In−2 { put tanx=t⇒sec2xdx=dt} In+In−2=n−11
Put n=10, we get I10+I8=91