Im,n=0∫1xm−1(1−x)n−1dx=In,m
Now Let x=y+11⇒dx=−(y+1)21dy
So Im,n=−∞∫0(y+1)m−11(y+1)n−1yn−1(y+1)2dy=0∫∞(1+y)m+nyn−1dy
similarly Im,n=0∫∞(1+y)m+nym−1dy
Now 2Im,n=0∫∞(1+y)m+nym−1+yn−1dy =0∫∞(1+y)m+nym−1+yn−1dy =0∫1(1+y)m+nym−1+yn−1dy+substitute y=t11∫∞(1+y)m+nym−1+yn−1dy ⇒2Im,n=0∫1(1+y)m+nym−1+yn−1dy−1∫0tm+n−2tn−1+tm−1(1+t)m+ntm+nt2dt ⇒ Hence 2Im,n=20∫1(1+y)m+nym−1+yn−1dy⇒α=1