Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If I(m, n)=∫ limits01 tm(1+t)n d t, then the expression for I(m, n) in terms of I(m+1, n-1) is
Q. If
I
(
m
,
n
)
=
0
∫
1
t
m
(
1
+
t
)
n
d
t
, then the expression for
I
(
m
,
n
)
in terms of
I
(
m
+
1
,
n
−
1
)
is
2278
205
Manipal
Manipal 2012
Report Error
A
m
+
1
2
n
−
m
+
1
n
I
(
m
+
1
,
n
−
1
)
B
m
+
1
n
I
(
m
+
1
,
n
−
1
)
C
m
+
1
2
n
+
m
+
1
n
I
(
m
+
1
,
n
−
1
)
D
m
+
1
m
I
(
m
+
1
,
n
−
1
)
Solution:
Here,
I
(
m
,
n
)
=
0
∫
1
t
m
(
1
+
t
)
n
d
t
[We apply integration by parts, taking
(
1
+
t
)
n
as first and
t
m
as second function]
I
(
m
,
n
)
=
[
(
1
+
t
)
n
⋅
m
+
1
t
m
+
1
]
0
1
−
0
∫
1
n
(
1
+
t
)
n
−
1
⋅
m
+
1
t
m
+
1
d
t
=
m
+
1
2
n
−
m
+
1
n
0
∫
1
(
1
+
t
)
n
−
1
⋅
t
m
+
1
d
t
∴
I
(
m
,
n
)
=
m
+
1
2
n
−
m
+
1
n
⋅
I
(
m
+
1
,
n
−
1
)