I4,3=∫cos4xsin3xdx
Integrating by parts, we have I4,3=−3cos3xcos4x−34∫cos3xsinxcos3xdx
But sinxcos3x=−sin2x+sin3xcosx. So, I4,3=−3cosxcos4x+34∫cos3xsin2xdx −34∫cos4xsin3xdx+C =−3cos3xcos4x+34I3,2−34I4,3+C
Therefore, 37I4,3−34I3,2=−3cos3xcos3x+C
or 7I4,3−4I3,2=−cos3xcos4x+C