Given, i^,j^,k^ are unit vectors along the positive direction of x,y and z -axes, then
(a) Σi^×(j^+k^) =i^×(j^+k^)+j^×(k^+i^)+k^×(i^+j^) =k^−j^+i^−k^+j^−i^ =0
(b) Σi^×(j^×k^)=i^×(j^×k^)+j^×(k^×i^)+k^×(i^×j^) =(i^×i^)+(j^×j^)+(k^×k^) =0+0+0 =0
(c) Σi^⋅(j^×k^)=Σ(i^⋅i^)=Σ(1) =1+1+1=3
(d) Σi^⋅(j^+k^)=Σ(i^⋅j^+i^⋅k^)=Σ(0+0)=0