Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If I =∫(x5/√1+x3)dx , then I is equal to
Q. If
I
=
∫
1
+
x
3
x
5
d
x
, then I is equal to
1302
227
VITEEE
VITEEE 2008
Report Error
A
9
2
(
1
+
x
3
)
2
5
+
3
2
(
1
+
x
3
)
2
3
+
C
B
l
o
g
∣
∣
x
+
1
+
x
3
∣
∣
+
C
C
l
o
g
∣
∣
x
−
1
+
x
3
∣
∣
+
C
D
9
2
(
1
+
x
3
)
2
3
−
3
2
(
1
+
x
3
)
2
1
+
C
Solution:
I
=
∫
1
+
x
3
x
5
d
x
=
∫
1
.
+
x
3
x
3
.
x
2
d
x
L
e
t
1
+
x
3
=
t
2
,
so
t
ha
t
3
x
2
d
x
=
2
t
d
t
⇒
x
2
d
x
=
3
2
t
d
t
∴
I
=
∫
t
(
t
2
−
1
)
3
2
t
d
t
=
3
2
∫
t
2
−
1
)
d
t
=
3
2
(
3
t
3
−
t
)
+
C
=
3
2
[
3
(
1
+
x
3
)
3/2
−
(
1
+
x
3
)
2
1
]
+
C
=
9
2
(
1
+
x
3
)
3/2
−
3
2
(
1
+
x
3
)
1/2
+
C