Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If I=∫ (x2-x+1/x2+1).ecot-1xdx= A(x)ecot-1x+C, then A(x) is equal to :
Q. If
I
=
∫
x
2
+
1
x
2
−
x
+
1
.
e
co
t
−
1
x
d
x
=
A
(
x
)
e
co
t
−
1
x
+
C
,
then
A
(
x
)
is equal to :
7840
228
JEE Main
JEE Main 2013
Integrals
Report Error
A
−
x
6%
B
x
31%
C
1
−
x
53%
D
1
+
x
9%
Solution:
Let
I
=
∫
x
2
+
1
x
2
−
x
+
1
.
e
co
t
−
1
x
d
x
Put
x
=
co
t
t
⇒
−
cose
c
2
d
t
=
d
x
Now,
1
+
co
t
2
t
=
cose
c
2
t
∴
I
=
∫
(
1
+
co
t
2
t
)
e
t
(
co
t
2
t
−
co
t
t
+
1
)
(
−
cose
c
2
t
)
d
t
=
−
∫
e
t
(
cose
c
2
t
−
co
t
t
)
d
t
=
∫
e
t
(
co
t
t
−
coes
c
2
t
)
d
t
=
e
t
co
t
t
+
C
=
e
co
t
−
1
x
(
x
)
+
C
≡
A
(
x
)
.
e
co
t
−
1
x
+
C