Since, I =∫e4x+e2x+1exdx
and J=∫1+e2x+e4xe3xdx ∴J−I=∫1+e2x+e4x(e3x−ex)dx
Put ex=u⇒exdx=du ∴J−I=∫1+u2+u4(u2−1)du=∫1+u21+u2(1−u21)du =∫(u+u1)2−1(1−u21)du
put u+u1=t⇒(1−u21)du=dt =∫t2−1dt=21log∣t+1t−1∣+c =21log∣u2+u+1u2−u+1∣+c=21log∣e2x+ex+1e2x−ex+1∣+c