Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If I=∫ (x3-1/x5+x4+x+1) d x=(1/4) ln (f(x))- ln (g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1, then the value of f(1) ⋅ g(1) is equal to
Q. If
I
=
∫
x
5
+
x
4
+
x
+
1
x
3
−
1
d
x
=
4
1
ln
(
f
(
x
))
−
ln
(
g
(
x
))
+
c
(where,
c
is the constant of integration) and
f
(
0
)
=
g
(
0
)
=
1
, then the value of
f
(
1
)
⋅
g
(
1
)
is equal to
582
151
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
4
Solution:
The given integral is
I
=
∫
(
x
+
1
)
(
x
4
+
1
)
x
3
−
1
d
x
=
∫
(
x
+
1
)
(
x
4
+
1
)
x
3
+
x
4
−
x
4
−
1
d
x
=
∫
(
x
+
1
)
(
x
4
+
1
)
x
3
(
x
+
1
)
−
(
x
4
+
1
)
d
x
=
∫
x
4
+
1
x
3
d
x
−
∫
x
+
1
d
x
=
4
1
∫
x
4
+
1
4
x
3
d
x
−
∫
x
+
1
d
x
=
4
1
l
n
(
x
4
+
1
)
−
l
n
(
1
+
x
)
+
c
Hence,
f
(
x
)
=
x
4
+
1
,
g
(
x
)
=
x
+
1
∴
f
(
1
)
⋅
g
(
1
)
=
2
×
2
=
4