Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If I= displaystyle ∫ (sin x/3 sin â¡ x + cos â¡ x + 2)dx and J= displaystyle ∫ (cos x/3 sin â¡ x + cos â¡ x + 2)dx , then 3J-I is equal to (where C is the constant of integration)
Q. If
I
=
∫
3
s
in
x
+
cos
x
+
2
s
in
x
d
x
and
J
=
∫
3
s
in
x
+
cos
x
+
2
cos
x
d
x
, then
3
J
−
I
is equal to (where
C
is the constant of integration)
1803
193
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
x
+
l
n
∣
3
s
in
x
+
cos
x
+
2
∣
+
c
0%
B
x
−
l
n
∣
3
s
in
x
+
cos
x
+
2
∣
+
c
0%
C
l
n
∣
3
s
in
x
+
cos
x
+
2
∣
+
c
100%
D
2
x
+
l
n
∣
3
s
in
x
+
cos
x
+
2
∣
+
c
0%
Solution:
3
J
−
I
=
∫
3
s
in
x
+
cos
x
+
2
3
cos
x
−
s
in
x
d
x
Let
3
s
in
x
+
cos
x
+
2
=
t
⇒
(
3
cos
x
−
s
in
x
)
d
x
=
d
t
So,
3
J
−
I
=
∫
t
d
t
=
l
n
∣
t
∣
+
C
3
J
−
I
=
l
n
∣
3
s
in
x
+
cos
x
+
2
∣
+
c