Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If I= displaystyle ∫ ((ln x)5/√x2 + x2 (ln â¡ x)3)dx= k√(ln x)3 + 1((ln â¡ x)3 - 2)+c (where c is the constant of integration), then 9k is equal to
Q. If
I
=
∫
x
2
+
x
2
(
l
n
x
)
3
(
l
n
x
)
5
d
x
=
k
(
l
n
x
)
3
+
1
(
(
l
n
x
)
3
−
2
)
+
c
(where
c
is the constant of integration), then
9
k
is equal to
1376
218
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
4
3%
B
2
62%
C
6
28%
D
10
6%
Solution:
Let
1
+
(
l
n
x
)
3
=
t
2
⇒
I
=
∫
3
t
(
t
2
−
1
)
2
t
d
t
⇒
I
=
3
2
∫
(
t
2
−
1
)
d
t
=
9
2
t
3
−
3
2
t
+
c
=
9
2
t
(
t
2
−
3
)
+
c
=
9
2
1
+
(
l
n
x
)
3
(
(
l
n
x
)
3
−
2
)
+
c
∴
k
=
9
2
⇒
9
k
=
2