Here, it is given that I=[1tanθ−tanθ1][1−tanθtanθ1]−1 =[1tanθ−tanθ1]×1+tan2θ1[1tanθ−tanθ1] =1+tan2θ1[1−tan2θ2tanθ−2tanθ1−tan2θ] =[1+tan2θ1−tan2θ1+tan2θ2tanθ1+tan2θ−2tanθ1+tan2θ1−tan2θ] =[cos2θsin2θ−sin2θcos2θ]
since, I=[ab−ba] ⇒[cos2θsin2θ−sin2θcos2θ]=[ab−ba] ∴cos22θ+sin22θ=1