Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If I1=∫ limitse e2(dx/ log x) and I2=∫ limits1 2(ex/x)dx , then
Q. If
I
1
=
e
∫
e
2
l
o
g
x
d
x
and
I
2
=
1
∫
2
x
e
x
d
x
, then
3952
224
Integrals
Report Error
A
I
1
=
I
2
22%
B
2
I
1
=
I
2
45%
C
I
1
=
2
I
2
20%
D
none of these.
13%
Solution:
I
=
e
∫
e
2
l
o
g
x
d
x
Put log
x
=
z
,
∴
x
=
e
z
∴
d
x
=
e
z
d
z
When
x
=
e
,
z
=
l
o
g
e
=
1
x
=
e
2
,
z
=
l
o
g
e
2
=
2
l
o
g
e
=
2
∴
I
1
=
1
∫
2
z
e
z
d
z
=
1
∫
2
z
e
x
d
x
=
I
2
∴
I
1
=
I
2