Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If I1= displaystyle∫x1(dt/1+t2) and I2= displaystyle∫11/x(dt/1+t2) for x > 0, then
Q. If
I
1
=
∫
x
1
1
+
t
2
d
t
and
I
2
=
∫
1
1/
x
1
+
t
2
d
t
for
x
>
0
,
then
2334
185
Integrals
Report Error
A
I
1
=
I
2
38%
B
I
1
>
I
2
38%
C
I
2
=
I
1
25%
D
none of these.
0%
Solution:
Putting
t
=
u
1
in
I
1
, we get
I
1
=
1/
x
∫
1
1
+
u
2
1
−
u
2
1
d
u
=
−
1/
x
∫
1
1
+
u
2
d
u
=
1
∫
1/
x
1
+
u
2
d
u
=
−
1
∫
1/
x
1
+
t
2
d
t
=
I
2
∴
I
1
=
I
2